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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-519

AN ANALYSIS OF EXACT AND APPROXIMATE EQUATIONS FOR THE

TEMPERATURE DISTRIBUTION IN AN INSULATED THICK

SKIN SUBJECTED TO AERODYNAMIC HEATING

By Robert S. Harris, Jr._and John R. Davidson

SUMMARY

The problem of calculating the temperature distribution in an

insulated slab is investigated. Exact and approximate solutions are

obtained, and the results are compared to determine the ranges of

applicability of the approximations. The approximations are found to

be within 9 percent of the exact solution when the ratio of the thermal

capacitance of the metal to that of the insulation and the ratio of the

conductance of the metal to that of the insulation are sufficiently

large. The roots of the characteristic equation of the exact solution

are generally applicable to the two-slab heat-transfer problem and are

tabulated up to the first nine roots.

INTRODUCTION

Some aircraft designs incorporate insulation to protect the struc-

ture from the effects of the elevated temperatures encountered in high-

speed flight. (See refs. 1 and 2.) The efficient design of such struc-

tures requires that the temperatures of the insulation and metal skin

be known. This temperature-distributlon problem is the same as that

of the boundary-value problem of two slabs of different thermal char-

acteristics Joined together at one face. Application of the exact

solution involves considerable computational effort, and when great

accuracy is not required, simplified approximate expressions are

desired.

The exact solution and two approximate solutions are presented

for the insulated slab subjected to a step-function adiabatic wall

temperature. The solutions to problems involving variable adiabatic

wall temperatures can be obtained from these results by applying

Duhamel's integral. The characteristic equation is independent of the

adiabatic-wall-temperature variation; the first nine roots of this

equation are tabulated for a wide range of thermal properties of the

slabs for reference purposes.



The results of the step-function temperature problem are shown
graphically to facilitate comparison with the approximate solutions.
The charts maybe used to evaluate the accuracy of approximate solu-
tions for particular numerical problems.

SYMBOLS

Ak,Bk

C

F

o(s)

h

k

p(s)

q

q(s)

S

Sn

T

t

U

W

x_y_z

arbitrary constants

specific heat

geometric factor

expression defined in the text (eq. (lO))

aerodynamic heat-transfer coefficient

thermal conductivity

function of (s)

thermal flux density

function of (s)

Laplace parameter

values of s that are poles of transformed solution

(see eq. (12))

temperature

thickness

dummy variable of integration

weight density

body coordinates

kit
_i -

ciwiti 2
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_2 = _i
_2

_n

kI
=

ht I

zi

_i = ti

Oi

kI c2w2t2 2

k2 ClWltl 2

roots of characteristic equation

Laplace transform of T i

k2t I

klt 2

c2w2t 2
p =

ClWlt I

T

Cj

tD

Subscripts :

O

i

2

nondimensional time parameter associated with the first

kit
approximate solution_

c2w2t2t I

Stefan-Boltzmann constant

time

expressions defined in the text (eq. (37a))

nondimensional time parameter associated with the. second

approximate solution,

initial

refers to insulation

refers to metal plate



aw

eq

fs

i

n

adiabatic wall

equilibrium

free space

indicial notation for metal slab or insulating surface

indlcial notation in expansions

ANALYSIS

The problem of determining the temperature distribution in an air-

craft structure insulated from the effects of aerodynamic heating is

analyzed by considering the structure to be two slabs of different

material Joined at one face. The exact solution is obtained in clas-

sical form by assuming that the slabs are heated uniformly over one of

the exposed surfaces. The entry of heat at the heated surface is

governed by Newton's "law of cooling," which applies when a solid sur-

face is in an atmosphere at a temperature different from that of the

surface. Figure l(a) is a schematic diagram of the system. The atmos-

pheric temperature is taken as the adiabatic-wall temperature associated

with aerodynamic heating, denoted by Taw; this temperature is the effec-

tive air temperature for heat-transfer purposes. The thermal conduct-

ance of the air boundary layer adjacent to the insulation surface is

denoted by h.

In all cases of the analysis h has been assumed constant, even

though Taw may be a function of time. It also has been assumed that

no heat is conducted away from the unheated slab surface and, there-

fore, that all heat that has entered the slabs is stored therein. All

material thermal properties are assumed constant.

Approximate solutions are obtained by reducing the partial-

differential heat-transfer equations to ordinary differential equations

by assuming a linear temperature gradient through the insulation and

no gradient through the metal structure. When the heating rate is low,

and when most of the thermal capacity of the system is located in the

metal structure, the problem approaches that of a steady state in which

the temperature gradient through the insulation would be linear. Also,

at low heating rates, the temperature gradient through the back (metal)

slab is small. Results identical to those obtained from the reduced

differential equations may be obtained by applying the same approxima-

tions to the exact solution.
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Exact Solution

Constant adiabatic wall temperature.- Figure l(a) is a sketch of

the insulated slab showing the coordinate systems that are used. The

flow of heat in each section obeys the standard equation for heat con-

duction:

8T i k /82Ti 82T i 82Til

-
(i = I, 2)

The heating is assumed to be uniform over the surface under considera-

tion; the equation then reduces to the one-dimensional form

_T i _2T i

ciwi _T - ki (i = i, 2)
_zi 2

(z)

where it is further assumed that the material properties are independent

of time and temperature.

Equation (i) may be nondimensionalized, for convenience, by setting

ki_ (2a)
_i = ciwiti 2

and

zi (2b)
hi = ti

These substitutions reduce equation (i) to

_Ti _ 82Ti (i = i, 2) (3)

8_ i 8_i2

The nondimensional boundary conditions are

k I 3T1

_1 --Shl (l'_l) = h[Taw - TI(t'°"I)]
(4a)



kI _T I k2 _T 2

tI _-_i(0'_I) - t2 _q2(i'_2)

(4b)

TI(O'_I) = T2(I,_ 2)
(4c)

(4d)

Boundary condition (49) states that the heat enters the insula-

tion surface at a rate proportional to the difference between the adia-

batic wall temperature and the temperature of the outer surface of the

insulation. Equation (4b) states that, at the interface, all heat

leaving the first slab enters the second slab. Equation (4c) equates

the temperature of the first slab to that of the second slab at the

interface, and equation (4d) states that no heat is lost through the

back surface of the second slab.

The initial condition is

Ti (qi,0) = To

In order to obtain a common time variable, the notation

L

7
2

i

16

is adopted.

_2 _ _i (5)

_2

Equations (3) may then be written

8TI _ _2 TI (6a)

8T2 _ 82T 2
(6b)

Equation (4a) is a n0_om0gene0us boundary condition. The solu-

tion to the problem might be accomplished by redefining the dependent
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variable to eliminate the nonhomogeneity at the boundaries. However,

such a transformation is unnecessary if the solution is obtained by

means of the Laplace transform technique.

The Laplace transforms of equations (6a) and (6b) are:

82

s81 _ To = _2 81
2

8282

s82 - To -

8_22

The transformation of equations (4) yields

(7a)

(_)

k 1 881 h [Tsa__ws) el(l,s) ] (Sa)

kI 881 k2 882(I,s )
_---(O,s) = t271_ I 8_ 2

(8b)

el(o,s)= e2(l,s) (8c)

where Taw

Solutions to equations (7) are

k2 de2 s) 0 (Sd)
t2 8q--_(0' =

is assumed to be a constant for the step-functlon solutions.

To81 = AI sinh _i + A2 cosh _ ]i + ms
(9a)

T o

82 = BI sinh _2 + B2 cosh _ _2 + (9b)

/
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Therefore

From condition (8c)

where A1, A2, B1, and B2 are arbitrary constants to be determined

by applying boundary conditions (8).

Applying boundary condition (8d) gives

h _B1=O
t2

B1 = 0, since, in general, k2/t 2 or _ are not zero.

T o T o
A2 +-_= B2 cosh _+ _-

L

7
2
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A2 = B 2 cosh

Applying condition (8b) gives

k-!ltlqs-_A 1 = _ _ B2 sinh

k2t 1

A1:_k_ B2si_

Applying condition (8a) yields

q 1co_h_ +A2sin_ :h s

or

I_ k2tl <h_lB2 _ si__ A
cosh A + sinh xr.|

+ coshZf_1 A
Taw- To

S
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where

This result may be written as

Taw- To

B2 = sG(s)

9
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k2t----_l' _ht_G(s) = _ klt2 sinh _ ]_
cosh _ + sinh .!2.1

+ cosh _Ct_ sinh _+ cosh_>13
(i0)

Substitution of the preceding values for the arbitrary constants Ak

and B k into equations (9) yields

(lla)

= To02 (%'_- %Icos_W _2+- (ll_)
\ sG(s)/ s

where

k2t I

klt 2

The inverse transforms of equations (ii) can be found formally by

the method given in reference 3 (P. 170)

[q(s)J q'n:_ (Sn)
., esn_ (12)

/
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provided the numerators and denominators are analytic, all of the poles

are contained in q(Sn) , and P(Sn) _ 0. The prime on q indicates dif-

ferentiation with respect to s. It can be shown by expanding the func-

tions of equations (ll) that these conditions are met. Therefore,

after the indicated differentiation has been performed, terms collected,

and _ substituted for kl_tl, this transform becomes

q'(s)= sG'(s)+ O(s)

= _°sh _[ _ _cOsh V_+ 8_ sinh_8

-_ _ sinh + _ cosh +

(13)

For all the poles except sn = 0, it should be noted that G(s) = O.

At the pole sn = 0, the inverse transform is

L

7
2

1

and

I

TII = Taw (14a)
Isn=O

T21 : Taw (14b)
ISn=O

Equations (14) are the steady-state solutions to the problem.

The transient portion of the solution is obtained when G(s) = O.

Equation (lO) can be put into the form of real functions by making the
substitution

sn = -Tn 2
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or

S_n = i7 n
(15)

L

7
2
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to yield

G(s)= 0

(_ iTn= 8_ sinh i7n --6- cosh -_- + sir_h

/ i7n

+ cosh iTnl_\

i7n
sinh -- + cosh _-_l

which becomes

_ sin 7n _ _--cos + sin + cos 7n sin _ - cos

=0

Equation (16) is the characteristic equation for the problem. The

inverse transforms of equations (ll) then become

(16)

DO

T1 - To 2- i+ _

Taw- To Knn=l

(sin 7n)(Sln _ _l,l e"_n2c_2

-
2 (c°s 7n) c°s --_ _i e-_n2_=

n=l

(17a)

To

- T O

CO

COS 7n_2 -7n_ 2-i- Kn e
n=l

(17b)

f
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where

En=_ s7 n

__n.n] [c 7n+ 1 sin + sin 7n os

7n 7n _--_(_ 7n _)7n cos _--+ _ sin _-+ sin -_- + 7n cos

_7 n 7n _/,_ 7n

sin _ + -_p cos

(18)

and the values of 7n are the roots of equation (16).

Variable adiabatic wall temperature.- The exact solution to a

heat-transfer problem with a step-function adiabatic wall temperature

may be used to obtain solutions to problems where the adiabatic wall

temperature varies with time. Duhamel's integral (ref. 4) gives the

relationship between the response to a step-functlon input and an arbi-

trary input. The use of this relationship with the previous step-

function solution (eqs. 17) gives the following equations in which

Taw is a function of time:

_ Fn

_ T
T1 To = (Taw- T°)cu2=0 + _ 2 (sin Fn)(Sin )e_Tn2C_2

n=l Kn

7n ) e-Tna 1
- I ,,(cos 7n)(COS _- B1

n:l Kn

a_21 _ (sin (sin 7n _l)
+ /0 +_ Z 7n) _- e'7n(a'2-u)

n=l Kn

-I (cos 7n)(COS 7n i)
-_ _ e-Tn2(a*2.u d(Taw - To) du

n=l Kn du

(19a)

L

7
2

1
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T2 - To = (Taw- To)G2=011 - _
n=l

COSKnTn_2 e-Tn2_2)

L

7
2

i

+

/0C_211- n=l_'c°s yn_2 e-Tn2(C_2-uld(Taw - T°)dUKn du

(19b)

In these equations the adiabatic wall temperature, which is a function

of time, is expressed as a function of the nondimensional time param-

eter _2, and u is a dummy variable of integration representing time.

It is understood that h remains constant. The characteristic equa-

tion for equations (19) is equation (16) and thus the roots 7n are

the same as those for constant Taw.

Constant, prescribed surface temperature.- The preceding develop-

ment has neglected the effects of radiation cooling. When the insula-

tion surface temperature is high, a considerable amount of heat will be

radiated to the surroundings instead of being conducted to the interior

of the slab. The amount of heat radiated is dependent upon the fourth

power of the absolute temperature of the surface, which results in a

nonlinear heat-transfer problem. The resulting complexity of solu-

tion can be reduced by an approximation to the outer-surface boundary
condition. (See ref. 2, appendix B.)

The heat transfer at the insulation outer surface is

q = qr + qc (20)

where q is the amount of heat conducted to the surface through the

boundary layer, qr is the heat radiated away from the surface to the

surroundingsj and qc is the heat conducted into the structure. Equa-

tion (20) may be written as

where TI is the temperature of the outside surface of the insulation,
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Tfs is the effective temperature of free space, _ is the Stefan-
Boltzmann constant, and F is the geometric radiation factor which
includes emissivity. The equation is useful when Taw> 3,000° R,

_TI I
and T1 > 2,000° R. For insulating materials kI -- will be

_i 91=i

small with respect to the radiation term and will be neglected in

equation (21). Also,

Tfs 4 << TI 4

and Tfs will be ignored. There remains

h(Taw - TI) = aFTI 4

or

which may be written as

TI(I + _F TI3 )--_- = Taw

Teq(l + -h-SFTeq3 ) = Taw (22)

where Teq is the equilibrium temperature of the outside surface of

the insulation. The resulting heat-transfer problem is one in which

the temperature of the outside surface is prescribed as Teq.

The solution of the problem with the prescribed surface tempera-

ture may be obtained by manipulation of equations (17). In equa-

tions (17) Taw is prescribed. The aerodynamic heat-transfer coeffi-

cient h requires that TI(I,_ 2) < Taw unless h -_ _. If h -_ _,

there is no gradient between Taw and TI(I_2) _ and Tl(ijc_2)= Taw.

Equations (16) and (17) with lim = lim are then the solutions to
h-_ _-_0

a heat-transfer problem with prescribed surface temperature. It is

necessary now only to change Taw to Teq in equations (17) to com-

plete the manipulation. The result for the metal plate only is

T 2 _ To _ cos 7n_ 2 e_Tn2CU2
Teq To - i -- _=i Hn

(23)



15

where

Hn = _- _ + cos 7n sin _-+ (I + _)sin 7n cos (24)

and where the roots 7n are determined from

_ tan 7n tan 7--qn= 1 (25)

which is obtained from equation (16) by taking the limit as _ _0.

Variable prescribed surface temperature.- In a manner similar to

the solution for the problem of variable Taw , the solution to the

problem involving a variable Teq may be found. Applying Duhamel's

integral to equation (23) results in

T2 - To = (Teq - To)m2=o<l - _.
n=l

cos 7n_2 -

Hn e 7n2_21

/0C_211 _ COS _n_2 e-_n2(Cu2"u)l d(Teq- T°)du (26)

+

n=l Hn du

where 7n is determined from equation (25).

In many instances the gradient through the metal plate is small,

and only the average temperature of the plate is of interest. The

average temperature of the metal may be found by integrating equa-

tion (17b) over the thickness and then dividing by the thickness.
There results

T2 - To = i - _. cos Tn e-Tn2m2
Taw - To 7nKn

n=l

Taw = Constant)

(27)

where T2 is the average temperature of the plate and where the values

of 7n are the roots of equation (16). The equilibrium temperature

equation is
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T2 " To _ sin
• = 1 - ___ 7n e -Tn2e2

Teq - To 7nHnn=l

where the roots T are determined from equation (25).

to the cases with _ariable Taw is:

(Teq = Constant)

(28)

The solution

n=l

÷
fO_211 Z slnTn-n=l TnKn e-Tn2(C_2"uld(Taw -du

T°) (29)

L

7
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where Taw = f(c_2) and values of Tn are from equation (16).

larly, for variable Teq,

ll _ sin Tn 21TO = (Teq- To)c_2=O - _nHn e-Tn2G_
n=l

Simi-

+ fO_ 1 - =n_l sln Tn e-Tn2(C_2-u)l d(Teq -TO)_-nHn du du
(3o)

where Teq = g(_2) and values of 7n are from equation (25).

Approximate Equations

First approximate solution.- In order to obtain the first approxi-

mate solution to the exact solutions in the preceding section, the fol-

lowing assumptions are made:

(1) The insulation has no thermal capacity

(2) There is no temperature gradient through the metal plate
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For the case of constant adiabatic wall temperature, the governing

equations may be obtained by considering heat balances for the system
sketched in figure l(b).

tl_ -

(31a)

L

7
2

1

dT2
h(T 1 _ T2 ) = c2w2t 2 _ (31b)
tI

In nondimensional form, these equations are

_a_-% = _(_l-_2) (32a)

d_2 (32b)
T1 - T2 = d-_-

where

kI

and

klV
=

c2w2t2t I

The solution for the metal temperature is

T2 - To

Taw - To. -l-exP-l+ _

= I- exp

c2w2t2t I + htI

(33)

Equation (33) can also be obtained by restricting equation (17b) to the

first series term, allowing cI to approach zero in equation (16), and

then assuming 7n small so that 7n tan 7n = _n2.
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The solution for the case of variable adiabatic wall temperature is

I+ - exp\ k -1 + du (34)

where _ is used as the time variable and

of integration.

u is the d_ variable

Second approximate solution.- The second approximate solution

admits that the thermal capacity of the insulation reduces the tem-

perature rise of the metal structure. The assumptions are that:

(i) There is no thermal gradient through the metal plate

(2) The thermal gradient through the insulation is linear

The second assumption is exactly true only in the steady-state

condition where the metal temperature is constant and where transient

conditions due to a change in adiabatic wall temperature have died

out. The temperature of a well insulated plate changes slowly, so

that the approximation should be satisfactory if Taw changes slowly

with time. The governing equations are:

dU-:h - _ _
tl_

(35a)

L

7
2

i

(i ClWltl + c2w2t2)_2 - t_(Tl - T2)

The solutions to equations (55) are

(35b)

-_i• -_2_
TI = Alle + Al2e + Taw (36a)

-¢1_ -_2_ " (36b)
T 2 = A21 e + A22e + Taw
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where

12 elwltl + tl lWltl + 2c2w2t2

- (-l)j)l-_ + h

\LolWltl 2 ClWltl

_ _z. __i/2

+

(37a)

_2

A21 = _l - _2 '(T° - Taw) (57b)

_2 - ¢1 - _2 (T° - .raw) (37c)

The term in equations (36) with the exponent containing @i is small

compared with the other term except when Taw is transient. For flight

times long compared with the initial transient period, the _l term

can be neglected.

k_itl2

Expanding the square-root term in equation (37a) to two terms yields

_ _i 1_ 4_ _/_+ ClWltl + q(ClWltl + 2c2w2t 2 -tl(ClWltl + 2c2w2t2) _

kl/tl 1

/ i htl\

ll + _ -_

1 + [. -- -kl----_(clwltl

1 + htl l\_J

\ _/

(38)
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In many practical cases, the term kl/ht I is small compared to 1.0.

With this assumption, a second approximate solution to equation (17b)

might be

T2 - To

Taw - To

I ll klT
c2w2t2t I + htl/\ ClWltl 12c2w2t 2

(39)

This equation is the same as equation (33) except for the term

ClWlt 1

1 + 2c2w2t2, which takes into account the effect of the thermal capacity

of the insulation.

The solution when Taw is variable is

T2 - TO = (Taw - To)T__O - exp
{i ClWltl

C2w2t2t I + _ 2c2w2t2/__

+ - exp -- _Z _ ClWltl

cRwRt2tl + + _2

a(%w-%) du
du

(4O)

where u is a dummy variable of integration.

L
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RESULTS AND DISCUSSION

The first nine roots of equation (16) are given in table I for

various values of the nondimensional parameters p = c2w2t2

ClWlt I '

k2t I k1

- klt_ , and _ - htl, where k is thermal conductivity, c is
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specific heat, w is weight density, t is thickness, h is the heat-
transfer coefficient, and the subscripts 1 and 2 refer to the insula-
tion slab and the metal slab, respectively. Table II gives the roots of
the characteristic equation for the special case of an infinite heat-
transfer coefficient (eq. (25), _ = 0), that is, solutions to a heat-
transfer problem with prescribed surface temperature. Interpolation
between various values of the roots is permitted for intermediate untab-
ulated values of the parameters. This interpolation is not necessarily
linear; one method of interpolation would be to construct a carpet plot
of the desired roots around the vicinity under consideration.

Figure 2 is a carpet plot of solutions to equation (27), the average
temperature of the metal slab for a step-function adiabatic wall tempera-
ture. In this and subsequent figures, note that the ordinates have been
modified to represent only the summationterms in the temperature equa-
tions. (A method of interpolation on carpet plots is demonstrated in
fig. 8 of ref. 5.) Figure 3 presents solutions to equation (17b) for
_2 = 0; this is the temperature at the back surface of the metal slab.
Figure 4 presents solutions to equation (17b) for the temperatures at
the interface of insulation and slab (_2 = l, _l = 0), and figure 5 is
a carpet plot of equation (17a) for the insulation outside surface tem-
perature (_l = 1). Figure 6 shows the average temperature of the back
slab for the case of constant prescribed surface temperature of the
insulation (h -_, _-_ 0).

In order to compress the time scale to a convenient size the solu-
tions were plotted with a nondimensional time scale of

kl T

k1

c2w2t2tlll + h-_--llll+ 2c2w2t2ClWltlI

(41)

which will be recognized as the nondlmensional time parameter from the

second approximate solution. (See eq. (39).)

Because of the extremely small temperature difference between the

interface and the exposed surface of the metal when _ _ 100, only one

plot is required in figures 2 to 4 to show T2 at _2 = 1 and _2 = 0.

Also, because T1 approaches Taw very rapidly when _ _ O.1, values
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of T1 are not included in figure 5. The case _2 = O, _ = 1.O,
p = 100 has been omitted from figure 3(a) because the scales of the
carpet are such that, for this case, the carpet "folds back" on itself
near _ = 1.0.

Because the nondimensional time parameter used in constructing the
charts is that of the second approximate solution, the accuracy of the
second approximate solution maybe rapidly comparedwith any of the curves
in figure 2 by comparing the curve with

Taw - T2 - e -_ (42a)

Taw - To

or

lo /Taw- (k2b)

which is a straight line on the figure. The dashed lines shown in fig-

ure 2 are plots of equation (42b). It can be seen from equation (42b)

that the slope of the second approximate solution in this plot will be

a constant, independent of p, _, and _.

A comparison of solutions for the case of _ = 0 (fig. 6) shows

c2w2t2

that if ClWltl 1 the error in 32 at the beginning of the heating

period is about O.05(Teq - To). Because the approximate solutions

neglect the thermal capacity of the insulation, these solutions give

a higher temperature rise than the exact solution. As the heating

period progresses the second approximate solution reaches the exact

solution at the time when T2 = Teq - 0.37(Teq - To). When

T 2 = Teq - O.l(Teq - To) the second approximate solution is

O.O15(Teq - To) lower than the exact solution.

c2w2t2 = i0, the second approximate solution and the exact
When p = ClWltl

solution agree within O.O05(Teq - To) for times when

c2w2t 2

T2 _ Teq - O.05(Teq - To). This solution improves as p = ClWltl _.

L

7
2

1
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As a result of the choice of the time parameter, the slope of the

first approximate solution, as it is plotted in the figures, changes

with p. As a function of _, the first approximate solution can be
written as

Taw - T2 i+_ -_ i+
-- e = e

Taw - To

L

7
2

1

The first approximate solution agrees with the exact solution for the

average metal temperature within 5 percent when the following criteria
are satisfied:

p >_-lO.O

>_-zoo. o

_<o.i

m<i.5

The accuracy of this solution increases with an increase in p or a

decrease in _. For p = lO, the error at _ = 4.0 is approximately

15 percent. However, for p = i00, the error up to _ = 4.0 is

negligible.

The second approximate solution is within 5 percent of the exact
solution when

r_> l.O

_- ioo.o

__0.i

_ __1.5

When e = 4.0 and p = 1.0, the error is approximately 55 percent.

However, when p = I003 the error is negligible up to _ = 4.0 for all

values of _, and when p = I0, the error is only 3 percent at _ = 4.0,

with _ less than 0.i. Although errors of 15 and 35 percent seem

large, when _ = 4.0 (Taw - T2) is approachlng zero, so that the error

in degrees is relatively small.

As long as p and _ are sufficiently large, the first approxi-

mate solution is adequate and will be useful in many cases because of

its simplicity. However, for values of O less than 10, the second
approximate solution will be more accurate.
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CONCLUDING REMARKS

Two approximate solutions for the temperatures in an insulated

structure have been compared with the exact solution. The approximations

are shown to be sufficiently accurate for use in many practical problems.

These approximations are good as long as the ratio of thermal capacity

of the metal to that of the insulation and the ratio of the conductance

of the metal to that of the insulation are large compared to 1.0 and the

ratio of the conductance of the insulation to the heat-transfer coef-

ficient is small compared to 1.O.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., July 21, 1960.
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(a) Exact solution.
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(b) Approximate solutions.

Figure i.- Configuration and coordinate system of insulated panel.

NASA - Langley Field, Va. L-721
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